future timeline technology singularity humanity
 
   
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed
 
     
     
 
       
 
 
 

6th May 2017

Fusion reactor achieves first plasma

A British company, Tokamak Energy, has achieved first plasma in the ST40, its latest prototype design for a fusion reactor. The machine is planned to reach 100 million degrees C in 2018, the temperature required for fusion.

 

fusion reactor future timeline technology 2018
Credit: Tokamak Energy

 

A new prototype fusion reactor has been turned on for the first time and officially achieved first plasma. The reactor aims to produce a record-breaking plasma temperature of 100 million degrees C for a privately-funded venture. This is seven times hotter than the centre of the Sun and the temperature necessary for controlled fusion.

The tokamak reactor, called the 'ST40', was built by Tokamak Energy, one of the world's leading private fusion energy ventures. The Oxfordshire-based company grew out of the Culham Centre for Fusion Energy and was established in 2009 to design and develop small fusion reactors. Tokamak Energy's aim is to put fusion power into the grid by 2030.

With the ST40 up and running, the next steps are to complete the commissioning and installation of the full set of magnetic coils which are crucial to reaching temperatures required for fusion. This will allow the ST40 to produce a plasma temperature of 15 million degrees C – as hot as the Sun's core – in autumn 2017.

 

fusion reactor sun core temperature
Credit: NASA's Goddard Space Flight Center

 

Following the 15 million degree milestone, the next goal is for the ST40 to produce plasma temperatures of 100 million degrees in 2018. This will be a record-breaking milestone, as the plasma will reach a temperature never before achieved in a privately owned and funded fusion reactor. 100 million degrees is an important threshold, as only at or above this temperature can the charged particles which naturally repel each other be forced together to induce a controlled fusion reaction. This will also prove the vital point that commercially viable fusion can be produced in compact spherical tokamaks.

Tokamak Energy's journey to generating fusion energy is moving at a rapid pace; the company has already reached the half-way point of its long-term plan to deliver fusion power. It is focused on working with a smaller reactor design – called a compact, spherical tokamak – that enables quicker development of devices, therefore speeding up the process towards achieving their ultimate targets: producing first electricity by 2025 and commercially viable fusion power by 2030. Tokamak Energy's research has also proven that this route to fusion power can be much faster than the development of conventional large-scale devices.

 

fusion reactor future timeline technology 2018
Credit: Tokamak Energy

 

Dr David Kingham, CEO of Tokamak Energy, commented: "Today is an important day for fusion energy development in the UK, and the world. We are unveiling the first world-class controlled fusion device to have been designed, built and operated by a private venture. The ST40 is a machine that will show fusion temperatures – 100 million degrees – are possible in compact, cost-effective reactors. This will allow fusion power to be achieved in years, not decades."

"We will still need significant investment, many academic and industrial collaborations, dedicated and creative engineers and scientists, and an excellent supply chain. Our approach continues to be to break the journey down into a series of engineering challenges, raising additional investment on reaching each new milestone. We are already half-way to the goal of fusion energy; with hard work we will deliver fusion power at commercial scale by 2030."

 

 

 

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 


 

comments powered by Disqus

 

« Previous Next »
 
     
   

 
     
 

Blogs

AI & Robotics Biology & Medicine Business & Politics Computers & the Internet
Energy & the Environment Home & Leisure Military & War Nanotechnology
Physics Society & Demographics Space Transport & Infrastructure

 

 

Archive

2015

 

2014

 

2013

 

2012

 

2011

 

2010

 

 
 
 
 

 


future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

Privacy Policy