Jump to content

Welcome to FutureTimeline.forum
Register now to gain access to all of our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, post status updates, manage your profile and so much more. If you already have an account, login here - otherwise create an account for free today!

These ads will disappear if you register on the forum


  • Please log in to reply
308 replies to this topic

#81
krowzin

krowzin

    New Member

  • Members
  • Pip
  • 1 posts

 

Scientists show future events decide what happens in the past

An experiment by Australian scientists has proven that what happens to particles in the past is only decided when they are observed and measured in the future. Until such time, reality is just an abstraction.

The Australian scientists set up an experiment similar to the double-slit one to try to estimate when particles took on a particle or wave form.
But instead of using light, they applied helium atoms, which are "heavier" than light photons, in the sense that photons have no mass, whereas atoms do. This was significant they said.
“Quantum physics predictions about interference seem odd enough when applied to light, which seems more like a wave, but to have done the experiment with atoms, which are complicated things that have mass and interact with electric fields and so on, adds to the weirdness,” said PhD student Roman Khakimov, who was involved in the experiment.
Nevertheless, they expected the atom to behave just like light, meaning that it would take on both the form of a particle and/or a wave. This time they fired the atoms at two grate-like forms created by lasers, although the effect was similar to a solid grate.
However, the second grate was only put in place after the atom had passed through the first one. And the second grate wasn't applied each time, only randomly, to see how the particles reacted differently.
What they found was that, when there were two grates in place, the atom passed through it on many paths in a wave form, but, when the second grate was removed, it behaved like a particle and took only one path through.
So, what form it would take after passing through the first grate depended on whether the second grate was put in place afterward. Therefore, whether it continued as a particle or changed into a wave wasn't decided until a future event had already taken place.
Time went backwards. Cause and effect appear to be reversed. The future caused the past. The arrow of time seemed to work in reverse.

 

Isn't that like a really huge discovery?



#82
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

It is. It's being covered pretty heavily.


  • That-Guy and krowzin like this
Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#83
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Theory turns to reality for nonlinear optical metamaterials

A research team has realized one of the long-standing theoretical predictions in nonlinear optical metamaterials: creation of a nonlinear material that has opposite refractive indices at the fundamental and harmonic frequencies of light. Such a material, which doesn't exist naturally, had been predicted for nearly a decade.

Observation of 'backward phase matching' -- a phenomenon also known as the 'nonlinear mirror' -- provided proof that this new type of metamaterial had been created. Demonstration of the phenomenon was reported by researchers at the Georgia Institute of Technology in a paper published June 15 in the journal Nature Materials ("Backward phase-matching for nonlinear optical generation in negative-index materials").


id40440.jpg

Image shows the metamaterial waveguide located at the center of a silicon chip, wired to an external circuit. A research team at Georgia Tech has created a nonlinear material that has opposite refractive indices at the fundamental and harmonic frequencies of light. (Courtesy of John Toon, Georgia Tech)


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#84
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Researchers predict existence of new quantum matter theoretically

 

Finland's Aalto University researchers have succeeded to predict, in theory, that superconducting surfaces can become topological superconductors when magnetic iron atoms are deposited on the surface in a regular pattern. They used the latest mathematical and physical models to predict the existence of a topological superconducting state on metallic superconducting surfaces and thin films. The results were recently published in the Physics Review Letters science journal ("Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices").
The work examines the properties of superconductors in low temperatures. The results are important in the search for new quantum states and possible use in future electronics applications.

id40470.jpg
The red arrows show magnetic atoms, such as iron, which form a regular structure on the surface of the superconducting metal. The topological superconducting area is surrounded by unidirectional edge states. (Image: Aalto University)


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#85
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

New research suggests that a certain type of artificial diamond can be used as a nanoscale temperature probe with unmatched precision over time and space.

 

Diamonds are known for many things: hardness, luster, and their reputation for being a “girl’s best friend.” But the gems have important scientific uses, too. New research suggests that a certain type of artificial diamond can be used as a nanoscale temperature probe with unmatched precision over time and space.

“I think this work is a real advance,” says materials scientist Daniel Jaque of the Autonomous University of Madrid, who was not involved in the study. “It’s a good paper on a hot topic.”

The tiny diamond probes can measure temperatures ranging from 120 K to 900 K (–153°C to 627°C)—as cold as the poles of Mars and almost 200° hotter than the surface of Venus. They can also detect temperature changes across distances as small as 5 μm (roughly the size of a sperm cell’s head) and on timescales as short as 800 picoseconds (0.0000000008 seconds). 

sn-diamondtemps.jpg

A unique defect in diamonds grown using nickel precursors can turn the gems into nanoscale thermometers with unmatched precision.


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#86
Sciencerocks

Sciencerocks

    Member

  • Members
  • PipPipPipPipPipPipPipPipPipPip
  • 6,733 posts
We've just started work on the technology to power a Star-Trek style replicator 19 hours ago by Gianluca Sarri, The Conversation
Machine to make anything. Credit: Shutterstock

Who has never dreamt of having a machine that can materialise any object we need out of thin air at the push of a button? Such machines only exist in the minds of science fiction enthusiasts and the film industry. The most obvious example is the "replicator" that Star Trek characters routinely use to generate a diverse range of objects, helping them escape from even the most impossible of plotlines.


Read more at: http://phys.org/news...-style.html#jCp


  • Yuli Ban and Ghostreaper like this

To follow my work on tropical cyclones


#87
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

New method of quantum entanglement vastly increases how much information can be carried in a photon


In the new study, researchers demonstrated that they could slice up and entangle each photon pair into multiple dimensions using quantum properties such as the photons’ energy and spin. This method, called hyperentanglement, allows each photon pair to carry much more data than was possible with previous methods.
Quantum entanglement could allow users to send data through a network and know immediately whether that data had made it to its destination without being intercepted or altered. With hyperentanglement, users could send much denser packets of information using the same networks.


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#88
wjfox

wjfox

    Administrator

  • Administrators
  • PipPipPipPipPipPipPipPipPipPip
  • 7,963 posts
  • LocationLondon

Large Hadron Collider discovers new pentaquark particle

Scientists at the Large Hadron Collider have announced the discovery of a new particle called the pentaquark.

It was first predicted to exist in the 1960s but, much like the Higgs boson particle before it, the pentaquark eluded science for decades until its detection at the LHC.

The discovery, which amounts to a new form of matter, was made by the Hadron Collider's LHCb experiment.

http://www.bbc.co.uk...onment-33517492


_84259341_84259311.jpg


  • Yuli Ban and Ghostreaper like this

#89
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

The discovery, which amounts to a new form of matter, was made by the Hadron Collider's LHCb experiment.


Yep. Today, we went to Pluto and discovered a new form of matter. Totally an average day for the human race.


  • wjfox and Jakob like this
Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#90
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Significant development in the understanding of macroscopic quantum behavior

For the first time, the wavelike behaviour of a room-temperature polariton condensate has been demonstrated in the laboratory on a macroscopic length scale. This significant development in the understanding and manipulation of quantum objects is the outcome of a collaboration between Professor Stéphane Kéna-Cohen of Polytechnique Montréal, Professor Stefan Maier and research associate Konstantinos Daskalakis of Imperial College London. Their work has been published in the prestigious journal Physical Review Letters ("Spatial Coherence and Stability in a Disordered Organic Polariton Condensate").

id40759.jpg

To produce the room-temperature condensate, the team of researchers from Polytechnique and Imperial College first created a device that makes it possible for polaritons - hybrid quasi-particles that are part light and part matter - to exist. The device is composed of a film of organic molecules 100 nanometres thick, confined between two nearly perfect mirrors. The condensate is created by first exciting a sufficient number of polaritons using a laser and then observed via the blue light it emits. Its dimensions can be comparable to that of a human hair, a gigantic size on the quantum scale. (Image: Konstantinos Daskalakis, Imperial College London)


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#91
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Density-near-zero acoustical metamaterial made in China

When a sound wave hits an obstacle and is scattered, the signal may be lost or degraded. But what if you could guide the signal around that obstacle, as if the interfering barrier didn't even exist? Recently, researchers at Nanjing University in China created a material from polyethylene membranes that does exactly that.
 
Their final product, described this week in the Journal of Applied Physics, was an acoustical "metamaterial" with an effective density near zero (DNZ). This work could help to endow a transmission network with coveted properties such as high transmission around sharp corners, high-efficient wave splitting, and acoustic cloaking.
"It's as if the entire [interior] space is missing," said Xiaojun Liu, a professor in the physics department at Nanjing University's Collaborative Innovation Center of Advanced Microstructures.
"We were curious about whether we could make a simple but compact density-near-zero metamaterial from just a few tiny membranes," Liu said, "and, if so, can we further manipulate sound and make acoustic invisibility cloaks and other strange functional devices?"
Previous prototypes had attempted to achieve density-near-zero by using coiled structures and phononic crystals to create "Dirac cones," but required large physical dimensions, complex geometric structures, and the difficult feat of slowing sound waves to extremely low velocities within scattering cylinders to be effective—limiting their practical applications.

densitynearz.jpg

Schematic representation of sound passing through the density-near-zero membrane. Credit: Liu/Nanjing University


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#92
wjfox

wjfox

    Administrator

  • Administrators
  • PipPipPipPipPipPipPipPipPipPip
  • 7,963 posts
  • LocationLondon

Another particle found!

 

Scientists have reported the discovery of the Weyl fermion after an 85-year search. This massless particle, described as "the most basic building block of all electrons", could help in the development of future electronics –

 

http://phys.org/news...lectronics.html

 

 

after85years.jpg


  • Yuli Ban, mik1192 and Whereas like this

#93
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Metal foams found to excel in shielding X-rays, gamma rays, neutron radiation

North Carolina State University researchers have found that lightweight composite metal foams they had developed are effective at blocking X-raysgamma rays, and neutron radiation, and are capable of absorbing the energy of high-impact collisions. The finding holds promise for use in nuclear power plants, space exploration, and CT-scanner shielding.
“This work means there’s an opportunity to use composite metal foam to develop safer systems for transporting nuclear waste, more efficient designs for spacecraft and nuclear structures, and new shielding for use in CT scanners,” says
Afsaneh Rabiei, a professor of mechanical and aerospace engineering at NC State, first developed the strong, lightweight metal foam made of steel, tungsten, and and vanadium for use in transportation and military applications. But she wanted to determine whether the foam could be used for nuclear or space exploration applications — could it provide structural support and protect against high impacts while providing shielding against various forms of radiation?
So she and her colleagues conducted multiple tests to see how effective it was at blocking X-rays, gamma rays, and neutron radiation. She then compared the material’s performance to the performance of bulk materials that are currently used in shielding applications. The comparison was made using samples of the same “areal” density – meaning that each sample had the same weight, but varied in volume.

metal-foam-block-X-rays-gamma-neutron-ra
Lightweight composite metal foams like this one have been found effective at blocking X-rays, gamma rays and neutron radiation, and are capable of absorbing the energy of high impact collisions — holding promise for use in nuclear safety, space exploration, and medical technology applications (credit: Afsaneh Rabiei, North Carolina State University)


  • Sciencerocks likes this
Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#94
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

A new look at superfluidity

MIT physicists have created a superfluid gas, the so-called Bose-Einstein condensate, for the first time in an extremely high magnetic field. The magnetic field is a synthetic magnetic field, generated using laser beams, and is 100 times stronger than that of the world’s strongest magnets. Within this magnetic field, the researchers could keep a gas superfluid for a tenth of a second — just long enough for the team to observe it. The researchers report their results this week in the journal Nature Physics ("Observation of Bose–Einstein condensation in a strong synthetic magnetic field").
A superfluid is a phase of matter that only certain liquids or gases can assume, if they are cooled to extremely low temperatures. At temperatures approaching absolute zero, atoms cease their individual, energetic trajectories, and start to move collectively as one wave.
Superfluids are thought to flow endlessly, without losing energy, similar to electrons in a superconductor. Observing the behavior of superfluids therefore may help scientists improve the quality of superconducting magnets and sensors, and develop energy-efficient methods for transporting electricity.
But superfluids are temperamental, and can disappear in a flash if atoms cannot be kept cold or confined. The MIT team combined several techniques in generating ultracold temperatures, to create and maintain a superfluid gas long enough to observe it at ultrahigh synthetic magnetic fields.

id41022.jpg

The Ketterle Group is working with lasers to create superfluids at MIT. Pictured, from left to right: grad student Colin Kenned, Professor Wolfgang Ketterle, grad student William Cody Burton, and grad student Woo Chang Chung.


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#95
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Researchers announce discovery in fundamental physics

When the transistor was invented in 1947 at Bell Labs, few could have foreseen the future impact of the device. This fundamental development in science and engineering was critical to the invention of handheld radios, led to modern computing, and enabled technologies such as the smartphone. This is one of the values of basic research. In a similar fashion, a branch of fundamental physics research, the study of so-called correlated electrons, focuses on interactions between the electrons in metals. The key to understanding these interactions and the unique properties they produce—information that could lead to the development of novel materials and technologies—is to experimentally verify their presence and physically probe the interactions at microscopic scales. To this end, Caltech's Thomas F. Rosenbaum and colleagues at the University of Chicago and the Argonne National Laboratory recently used a synchrotron X-ray source to investigate the existence of instabilities in the arrangement of the electrons in metals as a function of both temperature and pressure, and to pinpoint, for the first time, how those instabilities arise. Rosenbaum, professor of physics and holder of the Sonja and William Davidow Presidential Chair, is the corresponding author on the paper that was published on July 27, 2015, in the journalNature Physics ("Itinerant density wave instabilities at classical and quantum critical points").

 
id41083.jpg
One of the metallic samples studied, niobium diselenide, is seen here–the square in the center–as prepared for an X-ray diffraction experiment. (Image: University of Chicago/Argonne National Laboratory)


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#96
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Scientists trap antimatter long enough to study how it works

In science fiction stories, antimatter pops up everywhere as a power source for spaceships or the active ingredient in diabolical bombs. In real life, though, this mysterious substance is elusive and scientists have never had much of it to play around with.
But that is to change: at the Cern particle collider in Geneva, physicists have created and trapped atoms of antihydrogen for more than a thousand seconds, it was announced late on Sunday. It might not sound like long, but it is enough time for experiments that could help answer some of the most fundamental questions in physics.
The same scientists, based at the Alpha collaboration in Cern, were the first to trap antihydrogen last year when they created and held on to 38 atoms of the stuff for 172 milliseconds in a strong magnetic field. In their latest work,published in this month's edition of Nature Physics, they trapped 309 antihydrogen atoms for varying amounts of time up to 1,000 seconds (just over 16 minutes).


  • Sciencerocks likes this
Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#97
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Physicists Unveil First Quantum Interconnect
An international team of physicists has found a way to connect quantum devices in a way that transports entanglement between them.

One of the unsung workhorses of modern technology is the humble interconnect. This is essentially a wire or set of wires that link one part of an electronic system to another. In ordinary silicon chips, interconnect can take up most of the area of a chip; and the speed and efficiency with which information can travel along these interconnects, is a major limiting factor in computing performance.
So it’s no wonder that physicists and engineers are creating new generations of interconnect that will become the backbone of information processing machines of the future.
One of the most promising forms of number crunching is the quantum computer and its various associate quantum technologies, such as quantum communication, quantum cryptography, quantum metrology, and so on.
Physicists have made great strides in building proof-of-principle devices that exploit the laws of quantum physics to perform feats that would be impossible with purely classical mechanics. And yet a significant problem remains. These devices must work in isolation since nobody has perfected a way of joining them together effectively.
Today, that changes thanks to the work of Mark Thompson at the University of Bristol in the U.K. and a few pals around the world. These guys have built and tested a quantum interconnect that links separate silicon photonic chips and carries photons and, crucially, entanglement between them.

Quantum%20interconnect.png


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#98
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

Magnetic Wormhole Created in Lab

Ripped from the pages of a sci-fi novel, physicists have crafted a wormhole that tunnels a magnetic field through space.[/size]
"This device can transmit the magnetic field from one point in space to another point, through a path that is magnetically invisible," said study co-author Jordi Prat-Camps, a doctoral candidate in physics at the Autonomous University of Barcelona in Spain. "From a magnetic point of view, this device acts like a wormhole, as if the magnetic field was transferred through an extra special dimension." 
The idea of a wormhole comes from Albert Einstein's theories. In 1935, Einstein and colleague Nathan Rosen realized that the general theory of relativity allowed for the existence of bridges that could link two different points in space-time. Theoretically these Einstein-Rosen bridges, or wormholes, could allow something to tunnel instantly between great distances (though the tunnels in this theory are extremely tiny, so ordinarily wouldn't fit a space traveler). So far, no one has found evidence that space-time wormholes actually exist


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#99
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

A new kind of Physics based analog computation discovered

Decision-making—the ability to choose one path out of several options—is generally considered a cognitive ability possessed by biological systems, but not by physical objects. Now in a new study, researchers have shown that any rigid physical (i.e., non-living) object, such as an iron bar, is capable of decision-making by gaining information from its surroundings accompanied by physical fluctuations.
 
The researchers, Song-Ju Kim, Masashi Aono, and Etsushi Nameda, from institutions in Japan, have published their paper on decision-making by physical objects in a recent issue of the New Journal of Physics.
"The most important implication that we wish to claim is that the proposed scheme will provide a new perspective for understanding the information-processing principles of certain lower forms of life," Kim, from the International Center for Materials Nanoarchitectonics' National Institute for Materials Science in Tsukuba, Ibaraki, Japan, told Phys.org. "These lower lifeforms exploit their underlying physics without needing any sophisticated neural systems."
As the researchers explain in their study, the only requirement for a physical object to exhibit an efficient decision-making ability is that the object must be "volume-conserving." Any rigid object, such as an iron bar, meets this requirement and therefore is subject to a volume conservation law. This means that, when exposed to fluctuations, the object may move slightly to the right or left, but its total volume is always conserved. Because this displacement resembles a tug-of-war game with a rigid object, the researchers call the method "tug-of-war (TOW) dynamics."

physicalobje.jpg

In tug-of-war dynamics, an iron bar can decide which slot machine has the higher winning probability by moving to the left for each rewarded play and to the right for each non-rewarded play of Machine A. The bar’s movements are caused by physical fluctuations. Credit: Kim, et al.


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!

#100
Yuli Ban

Yuli Ban

    Nadsat Brat

  • Moderators
  • PipPipPipPipPipPipPipPipPipPipPip
  • 17,133 posts
  • LocationAnur Margidda

 

 

Scientists trap antimatter long enough to study how it works

In science fiction stories, antimatter pops up everywhere as a power source for spaceships or the active ingredient in diabolical bombs. In real life, though, this mysterious substance is elusive and scientists have never had much of it to play around with.
But that is to change: at the Cern particle collider in Geneva, physicists have created and trapped atoms of antihydrogen for more than a thousand seconds, it was announced late on Sunday. It might not sound like long, but it is enough time for experiments that could help answer some of the most fundamental questions in physics.
The same scientists, based at the Alpha collaboration in Cern, were the first to trap antihydrogen last year when they created and held on to 38 atoms of the stuff for 172 milliseconds in a strong magnetic field. In their latest work,published in this month's edition of Nature Physics, they trapped 309 antihydrogen atoms for varying amounts of time up to 1,000 seconds (just over 16 minutes).

 

 
Yuli, this news is from 2011..

 

Wow, that's embarrassing on my part. And on the part of the redditor who posted it.
 

Spooky At A Distance Is Real

The most rigorous test of quantum theory ever carried out has confirmed that the ‘spooky action at a distance’ that the German physicist famously hated — in which manipulating one object instantaneously seems to affect another, far away one — is an inherent part of the quantum world


It’s a bad day both for Albert Einstein and for hackers. The most rigorous test of quantum theory ever carried out has confirmed that the ‘spooky action at a distance’ that the German physicist famously hated — in which manipulating one object instantaneously seems to affect another, far away one — is an inherent part of the quantum world.
The experiment, performed in the Netherlands, could be the final nail in the coffin for models of the atomic world that are more intuitive than standard quantum mechanics, say some physicists. It could also enable quantum engineers to develop a new suite of ultrasecure cryptographic devices.
“From a fundamental point of view, this is truly history-making,” says Nicolas Gisin, a quantum physicist at the University of Geneva in Switzerland.

 
http://arxiv.org/abs/1508.05949


Nobody's gonna take my drone, I'm gonna fly miles far too high!
Nobody gonna beat my drone, it's gonna shoot into the sky!





Also tagged with one or more of these keywords: physics, quantum physics, general relativity, science, cosmology, astrophysics, super collider, CERN, thermodynamics, statistical mechanics

0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users