Superconductors news and discussions

User avatar
Yuli Ban
Posts: 4631
Joined: Sun May 16, 2021 4:44 pm

Re: Superconductors news and discussions

Post by Yuli Ban »



And remember my friend, future events such as these will affect you in the future
User avatar
wjfox
Site Admin
Posts: 8663
Joined: Sat May 15, 2021 6:09 pm
Location: London, UK
Contact:

Re: Superconductors news and discussions

Post by wjfox »

An atomic-scale window into superconductivity paves the way for new quantum materials

3 June 2022

Superconductors are materials with no electrical resistance whatsoever, commonly requiring extremely low temperatures. They are used in a wide range of domains, from medical applications to a central role in quantum computers. Superconductivity is caused by specially linked pairs of electrons known as Cooper pairs. So far, the occurrence of Cooper pairs has been measured indirectly macroscopically in bulk, but a new technique developed by researchers at Aalto University and Oak Ridge National Laboratories in the US can detect their occurrence with atomic precision.

The experiments were carried out by Wonhee Ko and Petro Maksymovych at Oak Ridge National Laboratory with the theoretical support of Professor Jose Lado of Aalto University. Electrons can quantum tunnel across energy barriers, jumping from one system to another through space in a way that cannot be explained with classical physics. For example, if an electron pairs with another electron right at the point where a metal and superconductor meet, it could form a Cooper pair that enters the superconductor while also “kicking back” another kind of particle into the metal in a process known as Andreev reflection. The researchers looked for these Andreev reflections to detect Cooper pairs.

To do this, they measured the electrical current between an atomically sharp metallic tip and a superconductor, as well as how the current depended on the separation between the tip and the superconductor. This enabled them to detect the amount of Andreev reflection going back to the superconductor, while maintaining an imaging resolution comparable to individual atoms. The results of the experiment corresponded exactly to Lado’s theoretical model.

This experimental detection of Cooper pairs at the atomic scale provides an entirely new method for understanding quantum materials. For the first time, researchers can uniquely determine how the wave functions of Cooper pairs are reconstructed at the atomic scale and how they interact with atomic-scale impurities and other obstacles.

‘This technique establishes a critical new methodology for understanding the internal quantum structure of exotic types of superconductors known as unconventional superconductors, potentially allowing us to tackle a variety of open problems in quantum materials,’ Lado says. Unconventional superconductors are a potential fundamental building block for quantum computers and could provide a platform to realize superconductivity at room temperature. Cooper pairs have unique internal structures in unconventional superconductors which so far have been challenging to understand.

This discovery allows for the direct probing of the state of Cooper pairs in unconventional superconductors, establishing a critical new technique for a whole family of quantum materials. It represents a major step forward in our understanding of quantum materials and helps push forward the work of developing quantum technologies.

https://www.eurekalert.org/news-releases/954798


Image
weatheriscool
Posts: 12727
Joined: Sun May 16, 2021 6:16 pm

Re: Superconductors news and discussions

Post by weatheriscool »

Study observes the coexistence of topological edge states and superconductivity in stanene films

by Ingrid Fadelli , Phys.org
https://phys.org/news/2022-06-coexisten ... ivity.html
Stanene is a topological insulator comprised of atoms typically arranged in a similar pattern to those inside graphene. Stanene films have been found to be promising for the realization of numerous intriguing physics phases, including the quantum spin Hall phase and intrinsic superconductivity.

Some theoretical studies also suggested that these films could host topological superconductivity, a state that is particularly valuable for the development of quantum computing technology. So far, however, topological edge states in stanene had not been reliably and consistently observed in experimental settings.

Researchers at Shanghai Jiao Tong University, the University of Science and Technology of China, Henan University, Zhengzhou University, and other institutes in China have recently demonstrated the coexistence of topological edge states and superconductivity in one to five-layer stanene films placed on the Bi(111) substrate. Their observations, outlined in a paper published in Physical Review Letters, could have important implications for the development of Stanene-based quantum devices.
weatheriscool
Posts: 12727
Joined: Sun May 16, 2021 6:16 pm

Re: Superconductors news and discussions

Post by weatheriscool »

Fermi-level tuning to improve the stability of 2D graphene-based FETs
https://techxplore.com/news/2022-06-fer ... based.html
by Ingrid Fadelli , Tech Xplore

Two-dimensional (2D) semiconductors are a class of semiconducting materials with thicknesses on the atomic scale. These materials have numerous advantageous properties, including good mobilities at thicknesses below 1 nm, which make them particularly promising for the development of field effect transistors (FETs) and other electronic, photonic and optoelectronic components.

Despite their advantages, when they are used to build electronic components, these materials often exhibit a limited electrical stability. The main reason for this is that the charge carriers originating from the semiconductors can interact with defects in the insulators that surround the materials inside devices, hindering the devices' stability.

Researchers at TU Wien and AMO GmbH have recently demonstrated a strategy that could be used to improve the stability of FETs based on 2D materials. This strategy, introduced in a paper published in Nature Electronics, entails tuning the Fermi Level of the 2D materials, ensuring that it maximizes the energy distance between the charge carriers and defects in the gate insulator while the device is operating.

"In FETs, the resulting trapped charges can lead to large hysteresis and device drifts, particularly when common amorphous gate oxides (such as silicon or hafnium dioxide) are used, hindering stable circuit operation," the researchers wrote in their paper. "We show that device stability in graphene-based field-effect transistors with amorphous gate oxides can be improved by Fermi-level tuning."
weatheriscool
Posts: 12727
Joined: Sun May 16, 2021 6:16 pm

Re: Superconductors news and discussions

Post by weatheriscool »

Physicists discover a 'family' of robust, superconducting graphene structures
https://phys.org/news/2022-07-physicist ... phene.html
by Jennifer Chu, Massachusetts Institute of Technology

When it comes to graphene, it appears that superconductivity runs in the family.

Graphene is a single-atom-thin material that can be exfoliated from the same graphite that is found in pencil lead. The ultrathin material is made entirely from carbon atoms that are arranged in a simple hexagonal pattern, similar to that of chicken wire. Since its isolation in 2004, graphene has been found to embody numerous remarkable properties in its single-layer form.

In 2018, MIT researchers found that if two graphene layers are stacked at a very specific "magic" angle, the twisted bilayer structure could exhibit robust superconductivity, a widely sought material state in which an electrical current can flow through with zero energy loss. Recently, the same group found a similar superconductive state exists in twisted trilayer graphene—a structure made from three graphene layers stacked at a precise, new magic angle.
weatheriscool
Posts: 12727
Joined: Sun May 16, 2021 6:16 pm

Re: Superconductors news and discussions

Post by weatheriscool »

Unusual superconductivity observed in twisted trilayer graphene
https://phys.org/news/2022-07-unusual-s ... phene.html
by Robert Perkins, California Institute of Technology
The ability to turn superconductivity off and on with a literal flip of a switch in so-called "magic-angle twisted graphene" has allowed engineers at Caltech to observe an unusual phenomenon that may shed new light on superconductivity in general.

The research, led by Stevan Nadj-Perge, assistant professor of applied physics and materials science, was published in the journal Nature on June 15.

Magic-angle twisted graphene, first discovered in 2018, is made from two or three sheets of graphene (a form of carbon consisting of a single layer of atoms in a honeycomb-like lattice pattern) layered atop one another, with each sheet twisted at precisely 1.05 degrees in relation to the one below it. The resulting bilayer or trilayer has unusual electronic properties: for example, it can be made into an insulator or a superconductor depending on how many electrons are added.
weatheriscool
Posts: 12727
Joined: Sun May 16, 2021 6:16 pm

Re: Superconductors news and discussions

Post by weatheriscool »

A proof of odd-parity superconductivity
https://phys.org/news/2022-07-proof-odd ... ivity.html

Image
by Ingrid Rothe, Max Planck Society
Superconductivity is a fascinating state of matter in which an electrical current can flow without any resistance. Usually, it can exist in two forms. One is destroyed easily with a magnetic field and has "even parity" (i.e., it has a point symmetric wave function with respect to an inversion point). The other form is stable in magnetic fields applied in certain directions and has "odd parity" (i.e., it has an antisymmetric wave function). Consequently, the latter form should present a characteristic angle dependence of the critical field where superconductivity disappears. But odd-parity superconductivity is rare in nature; only a few materials support this state, and in none of them has the expected angle dependence been observed.

In a new publication in Physical Review X, the group by Elena Hassinger and collaborators show that the angle dependence in the superconductor CeRh2As2 is exactly that expected of an odd-parity state.

CeRh2As2 was recently found to exhibit two superconducting states: A low-field state changes into a high-field state at 4 T when a magnetic field is applied along one axis. For varying field directions, we measured the specific heat, magnetic susceptibility, and magnetic torque of this material to obtain the angle dependence of the critical fields. We find that the high-field state quickly disappears when the magnetic field is turned away from the initial axis. These results are in excellent agreement with our model identifying the two states with even- and odd-parity states.
weatheriscool
Posts: 12727
Joined: Sun May 16, 2021 6:16 pm

Re: Superconductors news and discussions

Post by weatheriscool »

New leap in understanding nickel oxide superconductors
https://phys.org/news/2022-07-nickel-ox ... ctors.html
by Glennda Chui, SLAC National Accelerator Laboratory
A new study shows that nickel oxide superconductors, which conduct electricity with no loss at higher temperatures than conventional superconductors do, contain a type of quantum matter called charge density waves, or CDWs, that can accompany superconductivity.

The presence of CDWs shows that these recently discovered materials, also known as nickelates, are capable of forming correlated states—"electron soups" that can host a variety of quantum phases, including superconductivity, researchers from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University reported in Nature Physics today.

"Unlike in any other superconductor we know about, CDWs appear even before we dope the material by replacing some atoms with others to change the number of electrons that are free to move around," said Wei-Sheng Lee, a SLAC lead scientist and investigator with the Stanford Institute for Materials and Energy Science (SIMES) who led the study.

"This makes the nickelates a very interesting new system—a new playground for studying unconventional superconductors."

Nickelates and cuprates

In the 35 years since the first unconventional "high-temperature" superconductors were discovered, researchers have been racing to find one that could carry electricity with no loss at close to room temperature. This would be a revolutionary development, allowing things like perfectly efficient power lines, maglev trains and a host of other futuristic, energy-saving technologies.

But while a vigorous global research effort has pinned down many aspects of their nature and behavior, people still don't know exactly how these materials become superconducting.
weatheriscool
Posts: 12727
Joined: Sun May 16, 2021 6:16 pm

Re: Superconductors news and discussions

Post by weatheriscool »

Scientists clarify how best known superconductor works
https://phys.org/news/2022-08-scientist ... uctor.html
by Skolkovo Institute of Science and Technology

In a series of experiments on lanthanum superhydride with impurities, researchers from Skoltech, Lebedev Physical Institute of RAS and their colleagues from the United States, Germany and Japan, have established the mechanism behind the highest-temperature superconductivity in polyhydrides observed to date. Reported in Advanced Materials, the discovery paves the way for future studies pursuing materials that conduct electricity with zero resistance at or close to room temperature. Those would come in handy for superconducting electronics and quantum computers, maglev trains, MRI machines, particle accelerators, and perhaps even nuclear fission reactors and lossless power lines, if you're into that kind of thing.

If not the Holy Grail of materials science, near room-temperature superconductors are certainly among the most sought-after materials with technological applications. If discovered, such a material would enable monster electromagnets that could be used in fundamental research instruments, such as ultraprecise magnetic sensors and particle accelerators that would make the Large Hadron Collider seem puny, as well as in medical tech (better MRI scanners), magnetic levitation trains, miniature motors and generators, and extended battery life gadgets. Among the more futuristic applications are long-distance power transmission lines that would deliver electricity nearly without losses.

Theoretically, pure hydrogen should be the best high-temperature superconductor, provided you could squeeze it hard enough to turn it into a metal. But that's quite a challenge, to say the least. So instead, scientists are exploring compounds that contain additional elements, besides lots of hydrogen. That way they are sacrificing some of the temperature to bring the pressures needed to stabilize the superconducting material down and into the realm of what's technologically possible.
weatheriscool
Posts: 12727
Joined: Sun May 16, 2021 6:16 pm

Re: Superconductors news and discussions

Post by weatheriscool »

A magneto-optic modulator could facilitate the development of next-generation superconductor-based computers
https://techxplore.com/news/2022-09-mag ... based.html
by Ingrid Fadelli , Tech Xplore
In the future, many computers will most likely be based on electronic circuits made of superconductors. These are materials through which an electrical current can flow without energy losses, could be very promising for the development of high-performance supercomputers and quantum computers.

Researchers at University of California Santa Barbara, Raytheon BBN Technologies, University of Cagliari, Microsoft Research, and the Tokyo Institute of Technology have recently developed a magneto-optic modulator—a device that control the properties of a light beam through a magnetic field. This device, introduced in a paper published in Nature Electronics, could contribute to the implementation of large-scale electronics and computers based on superconductors.

"We are working on a new technology that can speed up high-performance supercomputers and quantum computers based on superconductor technology," Paolo Pintus, the researcher who led the study, told TechXplore. "Superconductors work properly only at low temperatures, generally just above absolute zero (-273.15° Celsius). Because of this, circuits made of these materials must be kept inside a dedicated refrigerator."

Circuits made of superconductors are typically connected to their external surroundings using metal cables. These cables have a limited communication speed and can transfer heat into a cold circuit.
Post Reply