Physics News and Discussions

weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

First lead-ion collisions in the Large Hadron Collider at record energy
https://phys.org/news/2022-11-lead-ion- ... lider.html
by CERN
On Friday, November 18, a test using collisions of lead ions was carried out in the Large Hadron Collider (LHC) and provided an opportunity for the experiments to validate the new detectors and new data-processing systems ahead of next year's lead-lead physics run.

After the successful start of Run 3 in July this year, which featured proton-proton collisions at the record energy of 13.6 TeV, it was the turn of lead nuclei to circulate in the LHC again last Friday after a gap of four years. Lead nuclei comprise 208 nucleons (protons and neutrons) and are used at the LHC to study quark-gluon plasma (QGP), a state of matter in which the elementary constituents, quarks and gluons, are not confined within nucleons but can move and interact over a much larger volume.

In the test carried out last Friday, lead nuclei were accelerated and collided at a record energy of 5.36 TeV per nucleon-nucleon collision. This is an important milestone in preparation for the physics runs with lead-lead collisions that are planned for 2023 and the following years of Run 3 and Run 4. In lead-lead collisions, each of the 208 nucleons of one of the lead nuclei can interact with one or several nucleons of the other lead nucleus.
weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

Studying muonium to reveal new physics beyond the Standard Model
https://phys.org/news/2022-11-muonium-r ... ndard.html
by Miriam Arrell, Paul Scherrer Institute

By studying an exotic atom called muonium, researchers are hoping misbehaving muons will spill the beans on the Standard Model of particle physics. To make muonium, they use the most intense continuous beam of low energy muons in the world at Paul Scherrer Institute PSI. The research is published in Nature Communications.

The muon is often described as the electron's heavy cousin. A more appropriate description might be its rogue relation. Since its discovery triggered the words "who ordered that" (Isidor Isaac Rabi, Nobel laureate), the muon has been bamboozling scientists with its law-breaking antics.

The muon's most famous misdemeanor is to wobble slightly too much in a magnetic field: its anomalous magnetic moment hit the headlines with the 2021 muon g-2 experiment at Fermilab. The muon also notably caused trouble when it was used to measure the radius of the proton—giving rise to a wildly different value to previous measurements and what became known as the proton radius puzzle.

Yet rather than being chastised, the muon is cherished for its surprising behavior, which makes it a likely candidate to reveal new physics beyond the Standard Model.

Aiming to make sense of the muon's strange behavior, researchers from PSI and ETH Zurich turned to an exotic atom known as muonium. Formed from a positive muon orbited by an electron, muonium is similar to hydrogen but much simpler. Whereas hydrogen's proton is made up of quarks, muonium's positive muon has no substructure. And this means it provides a very clean model system from which to sort these problems out: for example, by obtaining extremely precise values of fundamental constants such as the mass of the muon.
User avatar
caltrek
Posts: 6509
Joined: Mon May 17, 2021 1:17 pm

Re: Physics News and Discussions

Post by caltrek »

Don't mourn, organize.

-Joe Hill
weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

Particle physics in a humble glass chip: How quantum optics illuminates the nature of the quark

by Kirstin Werner, University of Rostock
https://phys.org/news/2022-12-particle- ... -chip.html
Scientists from the University of Rostock, Germany were able to recreate fundamental physical properties from the realm of elementary particle physics in a photonic system. The results are published in Nature Physics.

In their fundamental research, experimental physicists routinely bring giant yet intricate machinery to bear: Particle accelerators of enormous size smash together microscopic particles at velocities close to the speed of light, releasing unimaginable amounts of energy. In the remains of these collisions, scientists search for signatures of the fundamental forces of the universe.

Since the 1970s, a veritable zoo of particles was discovered and organized into the standard model of particle physics. Among them are quarks, the elementary building blocks of protons and neutrons. These unusual particles obey their own, quite idiosyncratic, properties that set them apart from any other form of matter. For instance, while there is only one kind of electric charge, that can be positive or negative, the behavior of quarks underlies completely different physical laws.

Prof. Stefan Scheel, head of the research group quantum optics of macroscopic systems at the University of Rostock explains, "Next to their electric charge, quarks come along with their own color charge: red, green, or blue. This, of course, has nothing to do with the colors found in a rainbow."
weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

New chip-scale laser isolator opens new research avenues in photonics
https://phys.org/news/2022-12-chip-scal ... onics.html
by Andrew Myers, Stanford University
Lasers are transformational devices, but one technical challenge prevents them from being even more so. The light they emit can reflect back into the laser itself and destabilize or even disable it. At real-world scales, this challenge is solved by bulky devices that use magnetism to block the harmful reflections. At chip scale, however, where engineers hope lasers will one day transform computer circuitry, effective isolators have proved elusive.

Against that backdrop, researchers at Stanford University say they have created a simple and effective chip-scale isolator that can be laid down in a layer of semiconductor-based material hundreds of times thinner than a sheet of paper.

"Chip-scale isolation is one of the great open challenges in photonics," said Jelena Vučković, a professor of electrical engineering at Stanford and senior author of the study appearing Dec. 1 in the journal Nature Photonics.
weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

Plasma instability may be a solution for magnetic nozzle plasma thrusters
https://phys.org/news/2022-12-plasma-in ... ozzle.html
by Tohoku University
A research group has demonstrated that spontaneously excited plasma waves may be the solution to a long-associated problem with magnetic nozzle plasma thrusters, turning conventional thinking on its head.

Details of their research were published in the journal Scientific Reports on December 5, 2022.

In magnetic nozzle radio frequency thrusters, sometimes referred to as helicon thrusters, magnetic nozzles channel and accelerate plasma to allow spacecraft to generate thrust. The technology, which harnesses electric propulsion, shows great potential for ushering in a new era of space travel. Yet the so-called "plasma detachment" problem has hampered further development.
weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

Researchers adapt a Nobel Prize-winning method to design new, ultra-powerful X-ray systems
https://phys.org/news/2022-12-nobel-pri ... x-ray.html
by Kimberly Hickok, SLAC National Accelerator LaboratoryAccelerator Laboratory
If scientists want to push the boundaries of, say, an X-ray laser, they may need to create some new technology. But occasionally there's no need to reinvent the wheel. Instead, scientists simply come up with a new way to use it.

Now, researchers at the Department of Energy's SLAC National Accelerator Laboratory have done just that in an effort to push the capabilities of the lab's Linac Coherent Light Source (LCLS) X-ray free-electron laser (XFEL). By adapting a technique for modern, superpowerful optical laser pulses called chirped pulse amplification (CPA), the SLAC team has designed a system capable of producing X-ray pulses ten times more powerful than before—all while staying within the LCLS's existing free-electron laser infrastructure.

The team published their results in Physical Review Letters on November 18.

"Current X-ray laser pulses from free-electron lasers have a peak power of roughly 100 gigawatts, and usually with a complex and stochastic structure," said Haoyuan Li, a postdoctoral scholar at SLAC and Stanford University and lead author of the new study.
weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

Large Hadron Collider Beauty releases first set of data to the public
https://phys.org/news/2022-12-large-had ... eauty.html
by CERN
The Large Hadron Collider Beauty (LHCb) experiment at CERN is the world's leading experiment in quark flavor physics with a broad particle physics program. Its data from Runs 1 and 2 of the Large Hadron Collider (LHC) has so far been used for over 600 scientific publications, including a number of significant discoveries.

While all scientific results from the LHCb collaboration are already publicly available through open access papers, the data used by the researchers to produce these results is now accessible to anyone in the world through the CERN open data portal. The data release is made in the context of CERN's Open Science Policy, reflecting the values of transparency and international collaboration enshrined in the CERN Convention for more than 60 years.

"The data collected at LHCb is a unique legacy to humanity, especially since no other experiment covers the region LHCb looks at," says Sebastian Neubert, leader of the LHCb open data project. "It has been obtained through a huge international collaborative effort, which was funded by the public. Therefore the data belongs to society."

The data sample made available amounts to 20% of the total data set collected by the LHCb experiment in 2011 and 2012 during LHC Run 1. It comprises 200 terabytes containing information obtained from proton–proton collision events filtered and recorded with the detector.
weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

Imposter physical particles revealed: A key advance for quantum technology
https://phys.org/news/2022-12-imposter- ... d-key.html
by Spanish National Research Council (CSIC)

The most common particles are electrons and photons, which are understood to be examples from the great families of fermions and bosons, to which all other particles in nature belong. But there is another possible category of particles, the so-called anyons. Anyons are predicted to arise inside materials small enough to confine the electronic state wave function, as they emerge from the collective dance of many interacting electrons.

One of these is named Majorana zero mode, anyonic cousins to the Majorana fermions proposed by Ettore Majorana in 1937. Majoranas, as these hypothetical anyons are affectionally called, are predicted to exhibit numerous exotic properties, such as simultaneously behaving like a particle and antiparticle, allowing mutual annihilation, and the capability to hide quantum information by encoding it nonlocally in space. The latter property specifically holds the promise of resilient quantum computing.

Since 2010, many research groups have raced to find Majoranas. Unlike fundamental particles, such as the electron or the photon, which naturally exist in a vacuum, Majorana anyons need to be created inside hybrid materials. One of the most promising platforms for realizing them is based on hybrid superconductor-semiconductor nanodevices. Over the past decade, these devices have been studied with excruciating detail, with the hope of unambiguously proving the existence of Majoranas. However, Majoranas are tricky entities, easily overlooked or mistaken with other quantum states.
weatheriscool
Posts: 12972
Joined: Sun May 16, 2021 6:16 pm

Re: Physics News and Discussions

Post by weatheriscool »

Coherent manipulation of spin qubits at room temperature
https://phys.org/news/2022-12-coherent- ... ature.html
by Chinese Academy of Sciences
A research group led by Prof. Wu Kaifeng from the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences recently reported the successful initialization, coherent quantum-state control, and readout of spins at room temperature using solution-grown quantum dots, which represents an important advance in quantum information science.

The study was published in Nature Nanotechnology on Dec 19th.

Quantum information science is concerned with the manipulation of the quantum version of information bits (called qubits). When people talk about materials for quantum information processing, they usually think of those manufactured using the most cutting-edge technologies and operating at very cold temperatures (below a few Kelvin), not the "warm and messy" materials synthesized in solution by chemists.

Recent years have witnessed the discovery of isolated defects in solid-state materials (such as NV centers) that have made possible room-temperature spin-qubit manipulation, but scaled-up production of these "point defects" will eventually become a challenge.
Post Reply