future timeline technology singularity humanity
 
   
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed
 
     
     
 
       
 
 
 

28th June 2017

"Mind reading" technology can decode complex thoughts

New research builds on the pioneering use of machine learning algorithms with brain imaging technology to "mind read." For the first time, thoughts containing several concepts can be decoded.

 

mind reading technology

 

Carnegie Mellon University scientists can now use brain activation patterns to identify complex thoughts, such as, "The witness shouted during the trial."

This latest research, led by CMU's Marcel Just, builds on the pioneering use of machine learning algorithms with brain imaging technology to "mind read." The findings indicate that the mind's building blocks for constructing complex thoughts are formed by the brain's various sub-systems and are not word-based. Published in Human Brain Mapping and funded by the Intelligence Advanced Research Projects Activity (IARPA), this study offers new evidence that the neural dimensions of concept representation are universal across people and languages.

"One of the big advances of the human brain was the ability to combine individual concepts into complex thoughts, to think not just of 'bananas,' but 'I like to eat bananas in evening with my friends,'" said Just, a Professor of Psychology in the Dietrich College of Humanities and Social Sciences. "We have finally developed a way to see thoughts of that complexity in the fMRI signal. The discovery of this correspondence between thoughts and brain activation patterns tells us what the thoughts are built of."

Previous work by Just and his team showed that thoughts of familiar objects, like bananas or hammers, evoke activation patterns that involve the neural systems we use to deal with those objects. For example, how you interact with a banana involves how you hold it, how you bite it and what it looks like.

The new study demonstrates that the brain's coding of 240 complex events, sentences like the shouting during the trial scenario uses an alphabet of 42 meaning components, or neurally plausible semantic features – consisting of features like person, setting, size, social interaction and physical action. Each type of information is processed in a different brain system, which is how the brain also processes the information for objects. By measuring the activation in each brain system, the program can tell what types of thoughts are being contemplated.

 

mind reading technology

 

For seven adult participants, the researchers used a computational model to assess how the brain activation patterns for 239 sentences corresponded to the neurally plausible semantic features that characterised each sentence. The program was then able to decode the features of the 240th left-out sentence. They went through leaving out each of the 240 sentences in turn, in what is called cross-validation.

The model was able to predict the features of the left-out sentence, with 87% accuracy, despite never being exposed to its activation before. It was also able to work in the other direction, to predict the activation pattern of a previously unseen sentence, knowing only its semantic features.

"Our method overcomes the unfortunate property of fMRI to smear together the signals emanating from brain events that occur close together in time, like the reading of two successive words in a sentence," Just said. "This advance makes it possible for the first time to decode thoughts containing several concepts. That's what most human thoughts are composed of."

He added, "A next step might be to decode the general type of topic a person is thinking about, such as geology or skateboarding. We are on the way to making a map of all the types of knowledge in the brain." CMU's Jing Wang and Vladimir L. Cherkassky also participated in the study.

Discovering how the brain decodes complex thoughts is one of the many brain research breakthroughs to happen at Carnegie Mellon. CMU has created some of the first cognitive tutors, helped to develop the Jeopardy-winning Watson, founded a groundbreaking doctoral program in neural computation, and is the birthplace of artificial intelligence and cognitive psychology. Building on its strengths in biology, computer science, psychology, statistics and engineering, CMU launched BrainHub, an initiative that focuses on how the structure and activity of the brain give rise to complex behaviours.

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 


 

comments powered by Disqus

 

« Previous Next »
 
     
   

 
     
 

Blogs

AI & Robotics Biology & Medicine Business & Politics Computers & the Internet
Energy & the Environment Home & Leisure Military & War Nanotechnology
Physics Society & Demographics Space Transport & Infrastructure

 

 

Archive

2015

 

2014

 

2013

 

2012

 

2011

 

2010

 

 
 
 
 

 


future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

Privacy Policy