future timeline technology singularity humanity



17th March 2013

NASA rover finds conditions once suited for ancient life on Mars

Analysis of a rock sample collected by NASA's Curiosity rover has shown that ancient Mars could have supported living microbes.


mars sample


Scientists identified sulphur, nitrogen, hydrogen, oxygen, phosphorus and carbon – some of the key chemical ingredients for life – in the powder Curiosity drilled out of a sedimentary rock near an ancient stream bed in Gale Crater last month.

"A fundamental question for this mission is whether Mars could have supported a habitable environment," said Michael Meyer, lead scientist for NASA's Mars Exploration Program at the agency's headquarters in Washington. "From what we know now, the answer is yes."

Clues to this habitable environment come from data returned by the rover's Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments. The data indicate the Yellowknife Bay area the rover is exploring was the end of an ancient river system, or an intermittently wet lake bed, that could have provided chemical energy and other favourable conditions for microbes. The rock is made up of a fine-grained mudstone containing clay minerals, sulphate minerals and other chemicals. This ancient wet environment, unlike some others on Mars, was not harshly oxidizing, acidic or salty.

The patch of bedrock where Curiosity drilled for its first sample lies in an ancient network of stream channels descending from the rim of Gale Crater. The bedrock is also fine-grained mudstone and shows evidence of multiple periods of wet conditions, including nodules and veins.


mars rock

Curiosity's drill collected the sample at a site just a few hundred yards away from where the rover earlier found an ancient streambed in September 2012.

"Clay minerals make up at least 20 percent of the composition of this sample," said David Blake, principal investigator for the CheMin instrument at NASA's Ames Research Center in California.

These clay minerals are a product of the reaction of relatively fresh water with igneous minerals, such as olivine, also present in the sediment. The reaction could have taken place within the sedimentary deposit, during transport of the sediment, or in the source region of the sediment. The presence of calcium sulphate along with the clay suggests the soil is neutral or mildly alkaline.

Scientists were surprised to find a mixture of oxidised, less-oxidised, and even non-oxidised chemicals, providing an energy gradient of the sort many microbes on Earth exploit to live. This partial oxidation was first hinted at when the drill cuttings were revealed to be gray rather than red.

"The range of chemical ingredients we have identified in the sample is impressive, and it suggests pairings such as sulphates and sulphides that indicate a possible chemical energy source for micro-organisms," said Paul Mahaffy, principal investigator of the SAM suite of instruments at NASA's Goddard Space Flight Center. An additional drilled sample will be used to help confirm these results for several of the trace gases analysed by the SAM instrument.

"We have characterised a very ancient, but strangely new 'gray Mars' where conditions once were favourable for life," said John Grotzinger, at the California Institute of Technology. "Curiosity is on a mission of discovery and exploration, and as a team we feel there are many more exciting discoveries ahead of us in the months and years to come."

Scientists plan to work with Curiosity in the "Yellowknife Bay" area for many more weeks, before starting a long drive to Gale Crater's central mound, Mount Sharp. Investigating the stack of layers exposed on Mount Sharp, where clay and sulphate minerals have been identified from orbit, may add clues about the duration and diversity of habitable conditions.


mount sharp


Comments »










⇡  Back to top  ⇡

Next »