future timeline technology singularity humanity
 
Blog»

 

 

31st January 2014

A simple new way to induce pluripotency: acid

Japanese researchers have converted adult cells from mice into stem cells by exposing them to acid. This could pave the way for routine use of stem cells in medicine with a technique that is cheaper, faster and more efficient than before.

 

 

An unusual reprogramming phenomenon by which the fate of somatic cells can be drastically altered through changes to the external environment is described in two new articles.

Postnatal somatic cells committed to a specific lineage are shown to be converted into a pluripotent state (capable of differentiating into nearly all cell types) when exposed to an environmental stress, in this case short exposure to low pH. This reprogramming process does not need nuclear manipulation or the introduction of transcription factors – thought to be necessary to induce pluripotency – so the work may have important implications for regenerative medicine.

Reprogramming in response to environmental stress has been observed in plants, whereby mature cells can become immature cells capable of forming a whole new plant structure, including roots and stalks. Whether animal cells have a similar potential has been a challenging question, but one that Haruko Obokata and co-authors have addressed. They demonstrate that mammalian somatic cells can be reprogrammed when stressed by low-pH conditions, and have named this phenomenon Stimulus-Triggered Acquisition of Pluripotency (STAP).

So-called STAP cells have some characteristics that resemble embryonic stem cells, but the STAP cells only have a limited capacity for self-renewal. In a second paper, Obokata and colleagues investigate the nature of STAP cells and suggest that they represent a unique state of pluripotency. The researchers also demonstrate that under pluripotent stem-cell culture conditions, STAP cells can be transformed into robustly self-renewing stem cells, similar to embryonic stem cells.

Together, these findings reveal that cells in the body have the potential to become pluripotent and provide new insights into the diverse cellular states.

Professor Chris Mason, an expert in regenerative medicine at University College London: "If it works in man, this could be the game changer that ultimately makes a wide range of cell therapies available using the patient's own cells as starting material – the age of personalised medicine would have finally arrived.

"Who would have thought that to reprogram adult cells to an embryonic stem cell-like (pluripotent) state just required a small amount of acid for less than half an hour? An incredible discovery."

 

STAP cells generated an entire fetus body.
STAP cells generated an entire fetus body. Credit: Haruko Obokata.

 

Comments »

 

 

 
 

 

Comments

 

 

 

 

⇡  Back to top  ⇡

Next »