future timeline technology singularity humanity
 
Blog»

 

1st August 2014

NASA reveals payload for Mars 2020 rover

NASA has announced the payload for its Mars 2020 rover mission, an upgraded version of the Curiosity rover currently exploring the Red Planet.

 

mars rover 2020

 

The next rover NASA will send to Mars in 2020 will carry seven instruments for unprecedented science and exploratory investigations. The agency confirmed the selected payload yesterday at its headquarters in Washington. Managers made their selections out of 58 proposals received in January from researchers and engineers worldwide. Proposals received were twice the usual number submitted for instrument competitions in the recent past. This is an indication of the extraordinary interest by the science community in the future exploration of Mars. The selected proposals have a total value of approximately $130 million for research and development.

The Mars 2020 mission will be based on the design of the highly successful Mars Science Laboratory rover – Curiositywhich landed in 2012 and is currently operating on Mars. The new rover will carry more sophisticated, upgraded hardware and new instruments to conduct geological assessments of the rover's landing site, determine the potential habitability of the environment, and directly search for signs of ancient Martian life. It will identify and store a collection of 30 rock and soil samples for return to Earth by a later mission. The rover will feature a new set of wheels, tougher and more durable than its predecessor, potentially boosting the mission lifespan.

"The Mars 2020 rover, with these new advanced scientific instruments – including those from our international partners – holds the promise to unlock more mysteries of Mars' past as revealed in the geological record," said John Grunsfeld, a former astronaut, and associate administrator of NASA's Science Mission Directorate in Washington. "This mission will further our search for life in the universe and also offer opportunities to advance new capabilities in exploration technology."

The Mars 2020 rover will also help to advance our knowledge of how future human explorers could use natural resources available on the surface of the Red Planet. An ability to live off the Martian land would transform future exploration of the planet. Designers of manned expeditions can use this mission to understand the hazards posed by Martian dust and demonstrate technology to process carbon dioxide from the atmosphere to produce oxygen. These experiments will help engineers learn how to use Martian resources to produce oxygen for human respiration and potentially for use as an oxidiser for rocket fuel.

"The 2020 rover will help answer questions about the Martian environment that astronauts will face and test technologies they need before landing on, exploring and returning from the Red Planet," said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at the NASA Headquarters in Washington. "Mars has resources needed to help sustain life, which can reduce the amount of supplies that human missions will need to carry. Better understanding the Martian dust and weather will be valuable data for planning human Mars missions. Testing ways to extract these resources and understand the environment will help make the pioneering of Mars feasible."

 

mars 2020 rover payload

 

The selected payload instruments are:

  • Mastcam-Z, an advanced hi-res camera system with panoramic, stereoscopic and zoom ability.
  • SuperCam, an instrument that can provide imaging, chemical composition analysis, and mineralogy. The instrument will also be able to detect the presence of organic compounds in rocks and regolith from a distance.
  • Planetary Instrument for X-ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer that will also contain an imager with high resolution to determine the fine scale elemental composition of Martian surface materials. PIXL will provide capabilities that permit more detailed detection and analysis of chemical elements than ever before.
  • Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC), a spectrometer that will provide fine-scale imaging and uses an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds. SHERLOC will be the first UV Raman spectrometer to fly to the surface of Mars and will provide complementary measurements with other instruments in the payload.
  • The Mars Oxygen ISRU Experiment (MOXIE), a device that will produce oxygen from Martian atmospheric CO2, demonstrating a technology of critical importance in future manned exploration.
  • Mars Environmental Dynamics Analyzer (MEDA), a set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity and dust size and shape.
  • Radar Imager for Mars' Subsurface Exploration (RIMFAX), a ground-penetrating radar that will provide centimetre-scale resolution of the geologic structure of the subsurface.

This announcement comes in the same week that an earlier 2004 roverOpportunity – having travelled more than 25 miles (40 kilometres), has set a new "off-world" record as the rover having driven the greatest distance. It surpasses the previous record held by the Soviet Union's Lunokhod 2 rover that had travelled 24 miles (39 kilometres).

 

Comments »

 

 

 
 

 

Comments

 

 

 

 

⇡  Back to top  ⇡

Next »