future timeline technology singularity humanity
 
Blog»

 

15th March 2016

ExoMars mission lifts off

The ExoMars Trace Gas Orbiter has been successfully launched from Baikonur in Kazakhstan. It will study methane on Mars, which could reveal whether life currently exists on the planet.

 

exomars launch march 2016
Credit: ESA–Stephane Corvaja, 2016

 

The first of two joint ESA–Roscosmos missions to Mars has begun a seven-month journey to the Red Planet, where it will address unsolved mysteries of the planet’s atmosphere that could indicate present-day geological – or even biological – activity.

The Trace Gas Orbiter and the Schiaparelli entry, descent and landing demonstrator lifted off on a Proton-M rocket operated by Russia’s Roscosmos at 09:31 GMT yesterday morning from Baikonur, Kazakhstan. Following separation of the Proton’s first and second stages, the payload fairing was released. The third stage separated nearly 10 minutes after liftoff. The Breeze-M upper stage, with ExoMars attached, then completed a series of four burns before the spacecraft was released at 20:13 GMT (21:13 CET). Signals from the craft, received at ESA’s control centre in Darmstadt, Germany, confirmed that the launch was successful and the spacecraft is in good health. The orbiter’s solar wings have also now unfolded and the craft is on its way to Mars.

“It’s been a long journey getting the first ExoMars mission to the launch pad, but thanks to the hard work and dedication of our international teams, a new era of Mars exploration is now within our reach,” said Johann-Dietrich Woerner, the Director General of ESA. “I am grateful to our Russian partner, who have given this mission the best possible start today. Now we will explore Mars together.”

“Only the process of collaboration produces the best technical solutions for great research results,” said Igor Komarov, General Director of the Roscosmos State Space Corporation. “Roscosmos and ESA are confident of the mission’s success.”

“We’re not only looking forward to the world-class science data that this mission will return, but it is also significant in paving the way for the second ExoMars mission, which will move our expertise from in-orbit observations to surface and subsurface exploration of Mars,” said Alvaro Giménez, ESA Director of Science.

 

 

 

The Trace Gas Orbiter (TGO) and Schiaparelli will travel to Mars together, before separating on 16th October at distance of 900,000 km (560,000 miles) from the Red Planet. Then, on 19th October, Schiaparelli will enter the Martian atmosphere, descending to the surface in just under six minutes. Schiaparelli will demonstrate key entry, descent and landing technologies for future missions, and will conduct a number of environmental studies during its short mission on the surface. For example, it will obtain the first measurements of electric fields on the surface of Mars that, combined with measurements of atmospheric dust, will provide new insights into the role of electric forces on dust lifting – the trigger for dust storms.

Meanwhile, on the same day, TGO will enter an elliptical four-day orbit, taking it from 300 km at its closest to 96,000 km at its furthest point. After a year of complex ‘aerobraking’, during which the spacecraft will use the planet’s atmosphere to lower its orbit slowly to a circular 400 km, its scientific mission to analyse rare gases in the atmosphere will begin.

Of particular interest is methane, which on Earth, points to active geological or biological processes. One of the mission’s key goals is to follow up on the methane detection made by ESA’s Mars Express in 2004 to understand the processes causing its generation and destruction, with an improved accuracy of three orders of magnitude over previous measurements.

TGO will also image features on the surface that may be related to trace-gas sources, such as volcanoes. In addition, it will be able to detect buried water-ice deposits, which, along with locations identified as trace gas sources, may influence the choice of landing sites of future missions. The orbiter will also act as a data relay for the second ExoMars mission – comprising a rover and stationary surface science platform, which is scheduled for launch in May 2018, arriving in 2019.

---

 

Comments »

 

 

 
 

 

Comments

 

 

 

 

⇡  Back to top  ⇡

Next »