future timeline technology singularity humanity
 
Blog»

 

 

7th December 2013

Ultra-thin 'electronic skin' provides diagnosis and therapy

Researchers have developed a futuristic new medical device, resembling an electronic tattoo, which provides continuous patient monitoring and treatment.

 

diagnostic skin

 

An international team from the University of Illinois at Urbana/Champaign and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) has created this form of "electronic skin". The device, measuring just 1 x 2 cm (0.39 x 0.78"), adheres like a sticking plaster and is highly flexible, conforming to contours and remaining in place even when skin is stretched or pinched. It provides non-invasive measurements of blood flow and temperature from any part of the body, with minimal patient discomfort, while delivering therapeutic functions.

The array features a combination of miniature power coils, transistors, sensors and heating elements. It was measured alongside an infrared camera to compare their abilities in detecting local variations of skin temperature and blood flow. These tests used a range of mental and physical stimuli to trigger readings. The results were virtually identical using the two methods, meaning the electronic skin matches the “gold standard” of infrared technology. Another test, using pulses of heat from the array, demonstrated its success in accurately measuring skin perspiration and overall hydration.

Future versions will incorporate a wireless power coil and antenna for remote data transfer. New sensors could eventually be developed that reveal blood cell counts, the precise levels of a circulating medication, or the activity of metabolites (such as alcohols, antioxidants, nucleotides, organic and amino acids, sugars and vitamins). The heating elements could deliver heat therapy to specific regions – increasing blood flow in the affected area for accelerated healing, pain relief, decreased joint stiffness, muscle spasm relief, or reduced inflammation. It could even incorporate actuators that deliver an electrical charge, or nanoparticles.

Such diagnostic and therapeutic functions could be performed while patients go about their daily business, with data relayed via cellphone to a doctor or AI program. Looking further into the future, these devices might be incorporated into clothing and shoes. Perhaps eventually, later this century, they will be sufficiently compact and distributed that almost every part of the human body could be treated and monitored in real-time. With a comprehensive merging of the organic and inorganic, the age of transhumanism would truly be upon us.

 

Comments »

 

 

 
 

 

Comments

 

 

 

 

⇡  Back to top  ⇡

Next »