future timeline technology singularity humanity
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

21st century

22nd century

The Far Future



2000s | 2010s | 2020s | 2030s | 2040s | 2050s | 2060s | 2070s | 2080s | 2090s

2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029

2022 timeline contents




The next generation of London Tube trains

A new generation of London Underground trains enters service during 2022,* remaining in operation for 40 years.* The aging Tube network had been underinvested for decades – resulting in ever-worsening delays, overcrowding and safety issues. In the early 21st century, however, a massive programme of upgrades and modernisation was initiated. This included a £16bn ($26bn) project announced by Transport for London in October 2014, intended to fundamentally overhaul its rolling stock.


london future tube trains 2022
Credit: Transport for London/PriestmanGoode


These futuristic new carriages were designed to accommodate the city's rapidly increasing population (forecast to grow by 37% to 11 million by 2050),* address safety concerns, improve usability for the disabled and offer a more pleasant overall experience for travellers. Step-free trains and wider doors would enable those in wheelchairs to have seamless access from platform to carriage, while door barriers placed on the edge (already introduced on the Jubilee Line) could prevent suicides or accidents.

With trains designed to be more spacious and easier to board – in combination with modern signalling and control systems – a faster, more frequent and more reliable service could be provided. The Piccadilly line, for example, serving many of London's top tourist attractions, would have its capacity boosted by 60%, equivalent to an extra 19,000 customers per hour.

In the past, summer temperatures and humidity on some lines were known to reach levels unsuitable for cattle transport.* All of these new carriages now featured air conditioning, for vastly improved comfort. In addition, hi-tech electronic displays could provide real-time information, while better lighting created a "living room" feel.

The New Tube is first introduced on the Piccadilly line in 2022, followed by the Bakerloo, Central and Waterloo & City lines. Self-driving trains are deployed from 2030.* These had already been present on some parts of the network, such as the Docklands Light Railway (DLR) in the Canary Wharf financial district. As they become widespread on the main Tube lines as well, these automated systems bring to an end the notorious union strikes which had caused severe disruption in earlier decades.





The ITER experimental fusion reactor is switched on

Human-engineered fusion was already demonstrated on a small scale. The problem has been finding ways of scaling it up to commercial levels in an efficient, economical, and environmentally benign way.

ITER – previously known as the International Thermonuclear Experimental Reactor – aims to be the first project to achieve this. Built in southern France at a cost of €20 billion, it has taken over a decade to construct and is among the largest scientific projects ever undertaken, second only to the International Space Station. This joint research experiment is funded by the US, EU, Japan, Russia, China, India and South Korea.

To demonstrate net fusion power on a large scale, the reactor must simulate the conditions at the Sun's core. For this, it uses a magnetic confinement device called a tokamak. This doughnut-shaped vacuum chamber generates a powerful magnetic field that prevents heat from touching the reactor's walls. Tiny quantities of fuel are injected into and trapped within the chamber. Here they are heated to 100 million degrees, forming a plasma. At such high temperatures, the light atomic nuclei of hydrogen become fused together, creating heavier forms of hydrogen such as deuterium and tritium. This releases neutrons and a huge amount of energy.

Following its operational activation in 2022,* it is hoped that ITER will eventually produce over 500 megawatts of power, in bursts of 400 seconds or more. This compares with 16 MW for the Joint European Torus (JET) in 1997, the previous world record peak fusion power, which lasted only a few seconds.

ITER will require many more years before its reactor has been sufficiently perfected. To generate the sort of continuous levels of power required for commercial operation, it will need a way of holding the plasma in place at the critical densities and temperatures. This will need refinements in the design of the chamber, such as better superconducting magnets and advances in vacuum systems.

However, it could ultimately lead to a revolution in energy. If this project were to succeed, humanity would gain a virtually unlimited supply of clean, green electricity.*


iter experimental fusion reactor 2018 future
Credit: ITER



Solar grid parity has been reached in almost 10% of the United States

Grid parity is defined as the point at which renewable energy is equal to, or cheaper than, utility grid electricity – without government subsidies. In the case of solar, although a number of factors are involved, countries with more sunshine tend to achieve this landmark sooner.* In the US, regions such as California and Hawaii were among the first states to reach grid parity.


Click to enlarge

future solar energy us 2020 2022 map
US photovoltaic solar resources. Credit: NREL


From 2010 onwards there was explosive growth of installed solar capacity both in the US* and around the world. Dramatic falls in cost, faster production through automation, new materials and efficiency improvements, concerns over global warming, new financing models and the increasingly competitive market with China and other countries, all helped in boosting the deployment of solar.

The bankruptcy of Solyndra (awarded hundreds of millions of dollars through a federal loan guarantee program) received much coverage in the US media. However, this was less a failure of the industry and more due to the success of competition in driving down prices. Solyndra's panels were made from copper indium gallium selenide – nonsilicon technology. Although this was expensive, it was competitive in 2008 when silicon prices were high. When the cost of silicon fell, so did the price of silicon panels, making Solyndra's technology obsolete.*

The growth trend for solar would continue throughout the 2010s and into the following decade, with prices plummeting still further.* Traditional utility companies were beginning to face enormous competition from inexpensive rooftop solar power, even in northern states like Minnesota, Wisconsin and Michigan.*

By 2022, almost 10% of the US has reached solar grid parity.* This is helping to mitigate some of the economic damage caused by rising oil prices. By 2030, a nationwide "smart grid" has been established across the country, able to intelligently manage and distribute solar energy to precisely where it is most required.* By the 2040s, even solar from space is commercially feasible* and by mid-century, solar dominates the global energy supply.*


future solar 2020 2020s technology



Germany phases out nuclear energy

After the Fukushima disaster in Japan, a number of countries began to reconsider their use of nuclear power. Germany was among the nations to abandon this form of energy altogether. Its government had originally planned to keep plants running until 2036, but this schedule was brought forward. Seven plants which had been temporarily shut down for testing in 2011, and an eighth taken offline for technical problems, would remain closed permanently. The remaining nine plants would be shut down by 2022.

Prior to this phasing out, nuclear power in Germany had produced a quarter of the country's electricity and the industry employed some 30,000 people. The shortfall would be made up by renewables, a temporary increase in coal use* and the cutting of electricity usage by 10 percent through more efficient machinery and buildings.*


german nuclear phase out 2020 2022
Germany's nuclear plants in 2011, showing the zones of radiation in a potential worst-case scenario, as happened with Fukushima. According to this map, large areas of north and south Germany would be made uninhabitable if all plants were to meltdown.



Qatar hosts the FIFA World Cup

Qatar is a tiny Persian Gulf nation of just 1.7 million people. It has the second highest GDP per capita in the world, owing to its massive natural gas deposits. It becomes the first country in the Middle East to host the World Cup.

Summers in Qatar can reach 50°C. However, each stadium employs state-of-the-art cooling technology, capable of reducing temperatures by over 20 degrees celsius. The upper tiers can be disassembled after the tournament and donated to countries with less developed sports infrastructure.

One of the stadia includes a 420,000 sq ft media facade, covering almost the whole exterior. This futuristic screen displays news, adverts, tournament information and live matches to viewers outside.*




China's first space station is complete

China's efforts to develop low Earth orbit (LEO) space station capabilities began with a space laboratory phase, consisting of three "Tiangong" space modules launched in 2011, 2013 and 2015, respectively. These were small and experimental modules intended to demonstrate the rendezvous and docking capabilities needed for a much larger space station complex. They were designed for short stays with crews of three.

The larger, modular space station begins to take shape in 2020, using the previous separate components which are arranged as a Core Cabin Module (CCM), Laboratory Cabin Module I (LCM-1) and Module II (LCM-2), a "Shenzhou" crewed vessel and a cargo craft for transporting supplies and lab facilities.

The multiphase construction program is completed by 2022. The complex weighs approximately 60,000 kilograms (130,000 lb) and will support three astronauts for long-term habitation. It has a design lifetime of ten years.*


china space station 2020 2021 2022
Credit: Chinese Society of Astronautics


The European Extremely Large Telescope is operational

This revolutionary new telescope is built in Cerro Armazones, Chile, by the European Southern Observatory (ESO), an intergovernmental research organisation supported by fifteen countries. It has the aim of observing the universe in greater detail than even the Hubble Space Telescope.

A mirror of 39 metres (129 ft) will be powerful enough to study the atmospheres of extrasolar planets. It will also perform "stellar archaeology" – measuring the properties of the first stars and galaxies, as well as probing the nature of dark matter and dark energy.

Originally planned for 2018,* the observatory is delayed until 2022 due to financial problems.* The mirror is also reduced in size slightly, having previously been 42m.


european extremely large telescope 2018
Credit: ESO


The Large Synoptic Survey Telescope begins full operations

Joining the European Extremely Large Telescope this year is another observatory, the Large Synoptic Survey Telescope (LSST), beginning full operations for a ten-year study.* This wide-field "survey" reflecting telescope is located on the 2,715 m (8,907 ft) Cerro Pachón, a mountain in northern Chile.

The LSST design is unique among large telescopes in having a very wide field of view: 3.5 degrees in diameter or 9.6 square degrees. For comparison, both the Sun and Moon, as seen from the Earth, are 0.5 degrees across or 0.2 square degrees. Combined with its large aperture, this provides it with a spectacularly large collecting power of 319 m²degree². In other words, vast amounts of data can be obtained simultaneously over huge areas of sky.

The observatory has a 3.2 gigapixel camera, taking 200,000 pictures (1.28 petabytes uncompressed) per year, far more than can be reviewed by humans. Managing and effectively data mining this enormous output is among the most technically difficult parts of the project, requiring 100 teraflops of computing power and 15 petabytes of storage. The main scientific goals of the LSST include:

  • Measuring weak gravitational lensing in the deep sky to detect signatures of dark energy and dark matter;

  • Mapping small objects in the Solar System, particularly near-Earth asteroids and Kuiper belt objects;

  • Detecting transient optical events such as novae and supernovae;

  • Mapping the Milky Way.

Data from the telescope (up to 30 terabytes per night) is made available by Google as an up-to-date interactive night-sky map.

The Large Synoptic Survey Telescope 2020 2021 2022 2020s 2032 timeline
Credit: LSST Corporation



Water is becoming a weapon of war

A combination of rapid population growth, lack of fresh water, social tension and weak government has led to significant regional instability in South Asia, the Middle East and North Africa.* Worsening climate change is producing longer droughts and more severe flooding, with tensions erupting in shared water basins.

Upstream countries are now using their greater resources for economic and political leverage over their downstream neighbours. At the same time, reservoirs and hydroelectric power plants are being targeted by terrorists and rogue states. Public fear of these attacks is forcing governments to take costly measures to protect their infrastructure.

Some particular flashpoints include the Nile in Egypt, Sudan and nations further south; the Tigris and Euphrates in Iraq and the greater Middle East; the Mekong in China and Southeast Asia; the Jordan River that separates Israel and the Palestinian territories from Jordan; the Indus and the Brahmaputra in India** and South Asia, as well as the Amu Darya in Central Asia.

Recent advances in desalination have made it easier to filter seawater.* However, these methods are patented and guarded by Western corporations. Just as food demands were taken advantage of in previous decades,*** the emerging water crisis is now being used as a means of exploitation and blackmail. Some developing nations are even being sued for attempting to develop cheaper versions for themselves.


water as weapon of war



Global reserves of antimony are running out

Antimony is a rare metalloid, used mainly as alloying material for lead and tin in products such as lead acid batteries, solders and bullets. It also functions in microelectronic products and in credit cards, as an additive for fireproofing, and in some pharmaceuticals. It is found naturally in the form of the sulfide mineral stibnite and was primarily produced in China, South Africa, Bolivia, Russia and Tajikistan.

Exploited by man for millennia, global reserves are finally beginning to run out during the early 2020s.* Since it now holds the bulk of the dwindling supply, China has been subject to controversies over trade. In an effort to control environmental issues and resolve safety problems, many of the country's mines and smelters were shut down in the previous decade. The local Government in Lengshuijiang, Hunan Province – accounting for 60% of world reserves – shuttered nearly all of its mines and smelters, sending the price of antimony soaring.

This pattern will play out again for other minerals in the decades to come. From this point on, business and industry are forced to rely on recycling of older products and/or shift to replacement materials.

For antimony chemicals in paint, pigments and enamels, the substitutes can include compounds of chromium, tin, titanium, zinc and zirconium. Combinations of cadmium, calcium, copper, selenium, strontium, sulfur and tin can be used as substitutes for hardening lead. Selected organic compounds and hydrated aluminum oxide are widely accepted substitutes as flame retardants. However, many of these other substances will themselves face shortages in the years to come.*


antimony global reserves



Nanotech clothes are growing rapidly in use

Fabrics that incorporate nanotech are becoming fairly commonplace. This includes truly waterproof garments, which are now a popular choice for consumers. These are made from polyester fibres coated with millions of silicone filaments, structured in such a way that water simply falls off, leaving no dampness whatsoever.* Nanotech is also being used by the military, police, firefighters and other specialist personnel to improve the resilience and flexibility of suits, protective gear and other equipment. Some uniforms can repel chemical and biological agents using nanotech.*


nanotech clothing 2020 future technology
Credit: University of Zurich/Wiley Vch



Poland begins exporting the PL-01 stealth tank

The PL-01, developed in a collaboration between Polish companies and British conglomerate BAE Systems, is a "stealth tank" featuring a thermal camouflage system. This renders the vehicle invisible to enemy infrared vision and works by using an array of hexagonal Peltier plates on the surface, which are heated and cooled to project a desired image, such as the background or a separate object.

The tank weighs 35 tonnes, measures 7 metres x 3.8 metres (23 ft x 12.5 ft) and carries a crew of three. It is designed to be light, fast and manoeuvrable, serving in a combat support role. A panoramic observation system enables 360° continuous views. This unmanned turret has an auto-loading, 120 mm calibre smoothbore cannon. Full-scale production begins in 2018, with exports commencing from 2022.*




« 2021 2023 »
                  Share Share


1 Revealed: Inside the new 'driverless' Tube trains to be phased in on London Underground from 2022, London Evening Standard:
Accessed 11th October 2014.

2 Design for the 'New Tube for London' revealed, Transport for London:
Accessed 11th October 2014.

3 London population to reach 11 million, says infrastructure report, BBC:
Accessed 11th October 2014.

4 Commuters hit by 'brutal' temperatures on London's transport network that it would be illegal to transport livestock in, London Evening Standard:
Accessed 11th October 2014.

5 Revealed: Inside the new 'driverless' Tube trains to be phased in on London Underground from 2022, London Evening Standard:
Accessed 11th October 2014.

6 "The original date for 'first plasma' was scheduled for November 2020 but delays with the construction and commissioning phases have pushed this back to October 2022."
See One giant leap for mankind: £13bn Iter project makes breakthrough in the quest for nuclear fusion, a solution to climate change and an age of clean, cheap energy, The Independent:
Accessed 28th April 2013.

7 Steven Cowley: Fusion is energy's future, TED Talks:
Accessed 23rd December 2009.

8 Solar Grid Parity Comes to Spain, Forbes:
Accessed 8th January 2013.

9 2011 Renewable Energy Data Book, U.S. Department of Energy:
Accessed 8th January 2013.

10 Solyndra – Illuminating Energy Funding Flaws?, Scientific American:
Accessed 8th January 2013.

11 Solar power prices to continue falling through 2025, experts say, Future Timeline Blog:
Accessed 8th January 2013.

12 Mapping Solar Grid Parity, Institute for Local Self-Reliance:
Accessed 8th January 2013.

13 Commercial Rooftop Revolution, Institute for Local Self-Reliance:
Accessed 8th January 2013.

14 See 2030.

15 See 2041.

16 Solar May Produce Most of World's Power by 2060, IEA Says, Bloomberg:
Accessed 9th January 2013.

17 Despite Climate Concerns, Germany Plans Coal Power Plants, dw-world.de:
Accessed 31st May 2011.

18 Germany: Nuclear power plants to close by 2022, BBC:
Accessed 30th May 2011.

19 Qatar 2022 FIFA World Cup bid: artist's impressions of futuristic stadiums are unveiled in Doha, The Telegraph:
Accessed 2nd December 2010.

20 China Details Ambitious Space Station Goals, Space.com:
Accessed 9th December 2011.

21 Location chosen for European Extremely Large Telescope, BBC:
Accessed 27th March 2011.

22 Europe Downscales Monster Telescope to Save Money, Science:
Accessed 7th December 2011.

23 LSST Timeline, LSST official website:
Accessed 28th April 2013.

24 "Beyond 2022 ... the use of water as a weapon of war or a tool of terrorism will become more likely, particularly in South Asia, the Middle East and North Africa."
See US intel: water a cause for war in coming decades, Yahoo!:
Accessed 24th March 2013.

25 See 2017.

26 A Volatile Brahmaputra River Will Grow Only More So, The New York Times:
Accessed 24th March 2013.

27 A step closer to affordable water desalination, Future Timeline Blog:
Accessed 24th March 2013.

28 "...the federal courts have always protected Monsanto's rights to profit via a patenting system that increasingly impinges on individual and market freedom, allowing Monsanto to abuse its patent rights."
Monsanto versus the people
, Al Jazeera:
Accessed 24th March 2013.

29 Corporate Evil – How Monsanto is Exploiting the Food Crisis, YouTube:
Accessed 24th March 2013.

30 Monsanto > Legal actions and controversies outside North America, Wikipedia:
Accessed 24th March 2013.

31 USGS Minerals Information: Antimony:
Accessed 3rd July 2012.

32 Earth's natural wealth: an audit, New Scientist:
Accessed 3rd July 2012.

33 Nanotech clothing fabric 'never gets wet', New Scientist:
Accessed 10th April 2009.

34 "It's estimated that the new uniforms could be deployed in the field in less than 10 years."
See UMass Amherst Research Develops 'Second Skin' Military Fabric to Repel Chemical and Biological Agents, University of Massachusetts Amherst:
Accessed 2nd December 2012.

35 PL-01 Future Stealth Tank Unveiled By Poland, Funker350.com:
Accessed 25th March 2014.




future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed